The reachable set of a piecewise-constant control system

Peter R. Wolenski

Louisiana State University, Baton Rouge, USA

ABSTRACT

We first consider the state space \mathbb{R}^n divided into two half-spaces \mathbf{M}_0 , \mathbf{M}_1 with a common interface Σ , all with associated velocity sets, respectively, \mathbf{F}_0 , \mathbf{F}_1 , \mathbf{F}_{Σ} . A trajectory $\mathbf{x}(\cdot)$ is an arc whose derivative is in the appropriate velocity set while $\mathbf{x}(\cdot)$ is in that region. The reachable set $\mathcal{R}^T(\mathbf{x})$ from a given $\mathbf{x} \in \mathbb{R}^n$ and time T > 0 consists of those points $\mathbf{y} \in \mathbb{R}^n$ that are endpoints of trajectories. We discuss conditions on \mathbf{F}_{Σ} which assure $\mathcal{R}^T(\mathbf{x})$ is closed and how one can produce *boundary* trajectories. Finally, we consider generalizations to more than two regions.

This is a joint work with Clinten Graham and Claire Pearson, both from Louisiana State University.